

	Subject Code: KAS10			103			
Roll No:					6 8		

Printed Page: 1 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 MATHEMATICS-I

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A		Attempt All of the following Questions in brief	Marks(10X2=20)	CO
Q1(a)	Find the eigen value of A^3 where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.			
Q1(b)	Show that the system of vectors $X_1 = (1, -1, 1), X_2 = (2, 1, 1), and$ $X_3 = (3, 0, 2)$ are linearly dependent or linearly independent.		1	
Q1(c)		$\sin nx + B\cos nx$, prove that $y_2 + n^2y = 0$.		2
Q1(d)	Find the asymptotes parallel to y-axis of the curve $\frac{a^2}{r} + \frac{b^2}{v} = 1$.			2
Q1(e)	If $x = rc$	$x = r\cos\theta$, $y = r\sin\theta$, $find \frac{\partial(r,\theta)}{\partial(x,y)}$.		
Q1(f)		An error of 2% is made in measuring length and breadth then find the percentage error in the area of the rectangle.		3
Q1(g)	Evaluate $\int_0^1 \int_0^{x^2} e^{\frac{y}{x}} dy dx$.			74
Q1(h)	Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.			4
Q1(i)	Find p su solenoid		$\cos x^2 y) k$ is	5
Q1(j)	State Gre	een's theorem for a plane region.	17.	5

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks(3X10=30)	CO
Q2(a)		eigen values and corresponding eigen vectors of $A = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 2 & -3 \\ 2 & 1 & -6 \\ 1 & -2 & 0 \end{bmatrix}.$	1
Q2(b)	Verify R	olle's theorem for the function $f(x) = \sqrt{4 - x^2}$ in $[-2]$,2].	2
Q2(c)	and our of the fact of modification	first six terms of the expansions of the function $e^x \log(1$ the neighborhood of the point $(0,0)$.	+ y) in a Taylor	3
Q2(d)	Change same.	the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence	e evaluate the	4
Q2(e)	If a vector	or field is given by $\vec{F} = (x^2 - y^2 + x)i - (2xy + y)j$ Is al? If so, find its scalar potential.	this field	5

SECTION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
x + 2y +	what values of λ and μ the system of linear inequation $4 \cdot 5z = 10$, $2x + 3y + \lambda z = \mu$ has(i) a unique solution ite solution. Also find the solution for $\lambda = 2$ and μ	on, (ii) no solution,	1
Q3(b) Find the	rank of matrix reducing it to normal form $A = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6 \end{bmatrix}$		1

Roll No: Subject Code: KAS103

Printed Page: 2 of 2

BTECH (SEM I) THEORY EXAMINATION 2021-22 MATHEMATICS-I

ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO
$ If y = (s \\ (1 - x^2) $	$\sin^{-1} x)^2$, show that $y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate	$y_n(0)$.	2
Verify m	nean value theorem for the function $f(x) = x(x - x)$	1) $(x-2)$ in $\left[0, \frac{1}{2}\right]$.	2
ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	СО
	If $y = (s (1 - x^2))$ Verify m	If $y = (sin^{-1}x)^2$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate Verify mean value theorem for the function $f(x) = x(x - 1)$ Attempt ANY ONE following Question	If $y = (sin^{-1}x)^2$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate $y_n(0)$. Verify mean value theorem for the function $f(x) = x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$.

SECT	SECTION-C Attempt ANY ONE following Question Marks (1X10=1)		Marks (1X10=10)	CO
	_	ngular box which is open at the top having capacity 32c.c.Find the dimension ox such that the least material is required for its constructions.		3
Q5(b)	If u, v and $\frac{\partial (u,v,w)}{\partial (x,y,z)}$.	we are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3$	$= 0$, cubic in λ , find	3

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10) CO
		louble integration the area enclosed by the pair of x and $y^2 = 2(2 - x)$.	curves 4
Q6(b)	Find C.G	. of the area in the positive quadrant of the curve	$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}.$

	1	
Attempt ANY ONE following Question	Marks (1X10=10)	CO
	P(1, -1, 2) in the	5
toke's Theorem for $\vec{F} = (y - z + 2)i + (yz + 4)j - z = 0, y = 0, z = 0, x = 2, y = 2, z = 2$ above the X	(xz)k over the surface OY plane.	5
.2022 08:3		
OA-API		
	directional derivative of $f(x, y, z) = xyz$ at the point of the vector $(2i - 2j + 2k)$. toke's Theorem for $\vec{F} = (y - z + 2)i + (yz + 4)j - 2i$	directional derivative of $f(x, y, z) = xyz$ at the point $P(1, -1, 2)$ in the